
LCLS-II LLRF Quench and Detune Revisited
Larry Doolittle, LBNL, 2016-10-25

Simplify the usual cavity equation of state by including only one driven port, ignoring 1/Q

of the probe, and postponing consideration of beam current. That leaves us with

d~V

dt
= a~V + b ~K1

a = jωd −
1

2
ω0

(
1

Q0
+

1

Q1

)

b = ω0

√
(R/Q)

Q1

If Q0 >> Q1, it’s possible to write

<(a) = −|b|2 · 1

2ω0(R/Q)

where ω0 and R/Q should be quite well known.

Re-cast the state equation in terms of DSP-processed ADC readings ~MV and ~MK , unitless

where full-scale is represented as 1. Thus we need calibration constants cV with units of

Volts, and cK with units of
√

Watts, so that

~V = cV · ~MV

~K1 = cK · ~MK

Substitute and rearrange the state equation to get

d ~MV

dt
= a ~MV +

(
b
cK
cV

)
~MK

a quick and direct in-situ experiment (short on-pulse followed by passive decay, recording

waveforms of MV and MK) can determine <(a) and β ≡ b(cK/cV) with good accuracy.

This same experiment is also useful to determine or cross-check the SEL phase offset term.

The relation above gives us

cK
cV

=

√
−2ω0(R/Q)<(a)

|β|

which can be cross-checked with what we hope are independent measures of cK and cV .

1

All that is left is to rearrange the state equation one more time to

a =
1

~MV

·

[
d ~MV

dt
− β ~MK

]
The FPGA can compute ~MV and ~MK with good accuracy at very high rates (up to

∼3 MS/s). Getting acceptable accuracy from a meaningful derivative term will take longer;

probably on the scale of 10µs to 100µs.

The strategy for tuning and quench detection comes into focus now. A DSP engine is fed a

continuous stream of ~MV and ~MK with time separation T , from which it can also compute

d ~MV /dt. It is pre-loaded with a (complex) value of β. After each new value of ~MV and
~MK is loaded, the equation above is used to compute (complex) a. The imaginary part

of a is the detune frequency ωd, which can be passed to the resonance control subsystem.

The real part of a is negative; if it moves above some pre-loaded threshold (maybe 0.9 of

the value of a found in the setup process), it is interpreted as a dramatic decrease in Q0,

and the quench detector trips.

This mechanism will, at least in theory, work under all modes of operation: fill, SEL, or

closed-loop. As | ~MV | gets smaller, measurement noise increases, and below some threshold

the computation should be inhibited. In that case, the tune algorithms should freeze, and

we hope it’s safe to assert no-quench. From a tuning-loop perspective, we want to enforce

a narrow range of voltage validity, and even some dwell-time within that range, to avoid

trying to follow irrelevant Lorentz detuning when the gradient is not what’s needed for

beam operations.

Computing the derivative involves a complex difference followed by multiplying by the

scalar representing 1/T . One full complex multiply gives the second term inside the brack-

ets. Then multiply by the conjugate of ~MV , and divide by | ~MV |2. All told about 18

fixed-point scalar multiplies and 10 adds or subtracts are required.

So far this analysis has used s−1 as the units for 1/T , β, and therefore a. Some other

choice of inverse-time units will make sense when implementing this with fixed-point DSP.

The software is free to configure that when choosing the numerical values of 1/T and β

to load into the DSP engine. With a signed 18-bit representation and a bit-quantum of

0.01 Hz, full-scale would be ±1310 Hz.

Restoring the beam current term to this analysis is not conceptually difficult, it just re-

quires additional calibration and timing input. The real un-answered question is how to

measure drifts in the β parameter in-place during CW operation.

The restriction that |~V | is not small is a troubling one for a quench detector. If ~V is stuck

at zero, even with forward power applied, the cavity could equally well be quenched or far

2

off-resonance. While a phase-ignoring power balance computation can possibly detect that

condition, it’s hard to generalize to the case with beam current, since the power absorbed

is always phase-sensitive. Let’s develop the power balance technique anyway, and claim

that beam current will only be turned on when ~V is far from zero, so that the state-vector

approach is running smoothly. Thus at least one of the two methods will always be valid.

First, refresh our memory that the reverse wave in the waveguide is

~R = c~V − ~K

(ignoring waveguide losses) where c = 1/
√
Q1(R/Q). This knowledge is helpful when

setting up test benches.

The way to account for the cavity’s stored energy is through the equation

U =
V 2

ω0(R/Q)

dU

dt
= 2<

(
~V
d~V

dt

)
· 1

ω0(R/Q)

The dissipated power in the cavity can then be estimated as

Pdiss = | ~K|2 − |~R|2 − dU

dt

If this exceeds some threshold power PQ, we can claim a quench condition is detected.

This representation purposefully uses the same notation and input measurements as the

state-vector method.

Converting to a hardware perspective, a trip is caused by a positive sign on the quantity

fK | ~MK |2 − fR| ~MR|2 − fV 2<

(
~MV ·

d ~MV

dt

)
− fQ

where fK = fc2K , fR = fc2R, fQ = fPQ, and

fV = f
c2V

ω0(R/Q)

and the free parameter f allows scaling from SI Watts to whatever internal number system

is convenient. Here we see the software needs to calibrate and download fK , fR, fV , and fQ.

The DSP engine needs to perform 9 fixed-point scalar multiplies and 6 adds or subtracts.

3

The arithmetic described here is more complicated than people usually associate with direct

FPGA programming techniques. Indeed, functionality like this has historically been done

on a dedicated DSP chip. Fortunately, FPGAs are big and fast enough now to subsume

that programmability by means of various architectures of soft-cores. Our use case does

not call even for a general-purpose soft-core, but rather one that can do a fixed sequence

of fixed-point arithmetic (adds, subtracts, multiplies) every time a new set of RF vector

measurements comes in.

Such a streamlined DSP core is on-the-shelf at LBNL; its basic architecture is shown here.

32-entry Register File
1W/2R

x

+/-

approx

1/x

<<n

const
input

result latch

result latch

output

heavily pipelined data path
128 cycles per run

359 LUTs
in Spartan-6:

1 DSP48A1
0 Block RAM

It is capable of running at higher clock speeds than even the double-rate DAC clock in

the LCLS-II FPGA. It can perform one batch of this arithmetic in 80 cycles: 16 to load

measurements and parameters, 45 useful arithmetic instructions, 2 output instructions, and

17 no-op cycles to wait for results to flow through its pipeline. The actual representation of

the jobs to be done (both state-variable and the power-balance, and an FIR computation

of the derivative of cavity voltage) is written as 17 lines of stylized Python, plus comments

and surrounding overhead (see appendix). This gets machine-converted to an 80 × 22-bit

program memory. As always, a good test bench is essential!

The 80 cycles of computation take little time compared to the many microseconds needed

to develop a decent dV/dt measurement. The hardware resources used are tiny both

compared to what’s available on the chip, and compared to what would be needed for a

direct mapping of the arithmetic to hardware.

4

Appendix: Program Listing

#!/usr/bin/python

SRF cavity analog state computer

Takes in cavity field, forward, and reverse vector measurements

and computes the cavity detune frequency, decay parameter, and

power imbalance for the purposes of a tuning loop and quench detector.

Keeps a history of the previous four cavity field measurements so it

can get dV/dt.

Output of this program should be both valid c99 and valid input

for the scheduler/mapper.

See the rest of the Digaree infrastructure for details.

from cgen_lib import cgen_init, given, mul, sub, cpx_sub, cpx_mul

from cgen_lib import cpx_scale, cpx_dot, cpx_inv_conj, cpx_mul_conj

from cgen_lib import cpx_mag, set_result, cpx_persist, cpx_copy, cpx_add

cgen_init("cgen_srf.py")

History of measured cavity voltages, used to compute dV/dt

Initial values in simulation are read from init.dat or init2.dat.

cpx_persist("v1")

cpx_persist("v2")

cpx_persist("v3")

cpx_persist("v4")

These lines declare the input variables,

first six streamed from the radio

given("k_r") # forward

given("k_i") # forward

given("r_r") # reverse

given("r_i") # reverse

given("v_r") # cavity

given("v_i") # cavity

next eight host-settable

given("beta_r")

given("beta_i")

given("invT")

given("two") # needed by 1/x macro

given("sclr")

given("sclf")

5

given("sclv")

given("powt")

Get (still unscaled) derivative

Implements [-2 -1 0 1 2] FIR

cpx_sub("dv1", "v", "v4", 3) # note multiply-by-4

cpx_sub("dv2", "v1", "v3", 2) # note multiply-by-2

cpx_add("dvx", "dv1", "dv2", 3) # note multiply-by-4

Result is the amount that V will change in 80*T.

Including the second-order CIC used to generate input samples,

this computation has a 3*T group delay.

State-variable computation of the complex number a,

yielding detune frequency and decay rate

cpx_inv_conj("x5", "v", 0, 3)

cpx_scale("dvdt", "dvx", "invT", 1)

cpx_mul("x3", "k", "beta", 1, 1)

cpx_sub("x4", "dvdt", "x3", 2) # some evidence this shift should be 1

cpx_mul_conj("a", "x4", "x5", 2, 2)

set_result("ab", "a_r", "a_i")

Power balance measure of cavity dissipation; uses magnitudes only

cpx_mag("magr", "r", 0) # reverse

mul("powr", "sclr", "magr", 0)

cpx_mag("magf", "k", 0) # forward

mul("powf", "sclf", "magf", 0)

sub("wgnet", "powf", "powr", 1) # net power transferred by waveguide

cpx_dot("dvsq", "v", "dvx", 2) # 2 * V * dV/dt = d/dt(V^2)

mul("dudt", "dvsq", "sclv", 3) # dU/dt = power to stored energy

sub("diss", "wgnet", "dudt", 1) # est. of dissipation in cold cavity

sub("perr", "diss", "powt", 1) # allow for measurement error

set_result("cd", "diss", "perr") # trigger quench fault if perr > 0

Watch these like a hawk: order of execution matters,

unlike everything else here

cpx_copy("v4", "v3")

cpx_copy("v3", "v2")

cpx_copy("v2", "v1")

cpx_copy("v1", "v")

6

