LCLS-II LLRF Quench and Detune Revisited
Larry Doolittle, LBNL, 2016-10-25

Simplify the usual cavity equation of state by including only one driven port, ignoring 1/Q
of the probe, and postponing consideration of beam current. That leaves us with
av oL
— =aV +bK
7t + 0k

) 1 (1+ 1)
a=jwg— —wo | =— + —
Jed T ko Qo @1

(R/Q)
b=woy| ——=
Vo
If Qo >> @4, it’s possible to write
1
R(a) = —b]*  ————
@ == om0

where wg and R/(Q should be quite well known.

Re-cast the state equation in terms of DSP-processed ADC readings M v and M K, unitless
where full-scale is represented as 1. Thus we need calibration constants cy with units of
Volts, and cx with units of v/ Watts, so that

V:CV~M\/
Klch'MK

Substitute and rearrange the state equation to get

dM - .
—V = aMV + bc—K M K
dt Cy
a quick and direct in-situ experiment (short on-pulse followed by passive decay, recording
waveforms of My and Mg ) can determine R(a) and 5 = b(ck /cy) with good accuracy.

This same experiment is also useful to determine or cross-check the SEL phase offset term.

The relation above gives us

ek _ v/ —2wo(R/Q)R(a)
cv 18]

which can be cross-checked with what we hope are independent measures of cx and cy .

1



All that is left is to rearrange the state equation one more time to

a =

Ty

1 | dMy
dt

TR,
The FPGA can compute My and My with good accuracy at very high rates (up to

~3MS/s). Getting acceptable accuracy from a meaningful derivative term will take longer;
probably on the scale of 10 us to 100 us.

The strategy for tuning and quench detection comes into focus now. A DSP engine is fed a
continuous stream of MV and My with time separation 7', from which it can also compute
dMy /dt. Tt is pre-loaded with a (complex) value of 5. After each new value of My and
M K is loaded, the equation above is used to compute (complex) a. The imaginary part
of a is the detune frequency wy, which can be passed to the resonance control subsystem.
The real part of a is negative; if it moves above some pre-loaded threshold (maybe 0.9 of
the value of a found in the setup process), it is interpreted as a dramatic decrease in Qo,
and the quench detector trips.

This mechanism will, at least in theory, work under all modes of operation: fill, SEL, or
closed-loop. As |Mv| gets smaller, measurement noise increases, and below some threshold
the computation should be inhibited. In that case, the tune algorithms should freeze, and
we hope it’s safe to assert no-quench. From a tuning-loop perspective, we want to enforce
a narrow range of voltage validity, and even some dwell-time within that range, to avoid
trying to follow irrelevant Lorentz detuning when the gradient is not what’s needed for
beam operations.

Computing the derivative involves a complex difference followed by multiplying by the
scalar representing 1/7. One full complex multiply gives the second term inside the brack-
ets. Then multiply by the conjugate of My, and divide by \MV|2. All told about 18
fixed-point scalar multiplies and 10 adds or subtracts are required.

So far this analysis has used s=! as the units for 1/T, 8, and therefore a. Some other
choice of inverse-time units will make sense when implementing this with fixed-point DSP.
The software is free to configure that when choosing the numerical values of 1/7" and
to load into the DSP engine. With a signed 18-bit representation and a bit-quantum of
0.01 Hz, full-scale would be +£1310 Hz.

Restoring the beam current term to this analysis is not conceptually difficult, it just re-
quires additional calibration and timing input. The real un-answered question is how to

measure drifts in the § parameter in-place during CW operation.

The restriction that \‘7\ is not small is a troubling one for a quench detector. If V is stuck
at zero, even with forward power applied, the cavity could equally well be quenched or far

2



off-resonance. While a phase-ignoring power balance computation can possibly detect that
condition, it’s hard to generalize to the case with beam current, since the power absorbed
is always phase-sensitive. Let’s develop the power balance technique anyway, and claim
that beam current will only be turned on when V is far from zero, so that the state-vector
approach is running smoothly. Thus at least one of the two methods will always be valid.

First, refresh our memory that the reverse wave in the waveguide is

—

R=cV-K
(ignoring waveguide losses) where ¢ = 1/41/Q1(R/Q). This knowledge is helpful when
setting up test benches.

The way to account for the cavity’s stored energy is through the equation

V2
V= B0

dU _ dV 1
ar = (V%) (R/Q)

The dissipated power in the cavity can then be estimated as

_ - au

Paiss = |K|2 - |R|2 - E

If this exceeds some threshold power FPgp, we can claim a quench condition is detected.
This representation purposefully uses the same notation and input measurements as the

state-vector method.
Converting to a hardware perspective, a trip is caused by a positive sign on the quantity

. . -~ dM
fr|Mx|* — frRIMg|* — fy2R <Mv : #) - fo

where fx = fc&, fr = fck, fq = [P, and

cv
fv=f—="
wo(R/Q)
and the free parameter f allows scaling from SI Watts to whatever internal number system
is convenient. Here we see the software needs to calibrate and download fx, fr, fv, and fg.

The DSP engine needs to perform 9 fixed-point scalar multiplies and 6 adds or subtracts.

3



The arithmetic described here is more complicated than people usually associate with direct
FPGA programming techniques. Indeed, functionality like this has historically been done
on a dedicated DSP chip. Fortunately, FPGAs are big and fast enough now to subsume
that programmability by means of various architectures of soft-cores. Our use case does
not call even for a general-purpose soft-core, but rather one that can do a fixed sequence
of fixed-point arithmetic (adds, subtracts, multiplies) every time a new set of RF vector
measurements comes in.

Such a streamlined DSP core is on-the-shelf at LBNL; its basic architecture is shown here.

Y

32-entry Register File
1W/2R

heavily pipelined data path

128 cycles per run
1 x
i +/- <<n —l_>
const —
| approx input —
| 1/x
in Spartan-6:
> resultlatch ——— 359 LUTs
output 1 DSP48A1
> resultlatch —— 0 Block RAM

It is capable of running at higher clock speeds than even the double-rate DAC clock in
the LCLS-II FPGA. It can perform one batch of this arithmetic in 80 cycles: 16 to load
measurements and parameters, 45 useful arithmetic instructions, 2 output instructions, and
17 no-op cycles to wait for results to flow through its pipeline. The actual representation of
the jobs to be done (both state-variable and the power-balance, and an FIR computation
of the derivative of cavity voltage) is written as 17 lines of stylized Python, plus comments
and surrounding overhead (see appendix). This gets machine-converted to an 80 x 22-bit
program memory. As always, a good test bench is essential!

The 80 cycles of computation take little time compared to the many microseconds needed
to develop a decent dV/dt measurement. The hardware resources used are tiny both
compared to what’s available on the chip, and compared to what would be needed for a
direct mapping of the arithmetic to hardware.



Appendix: Program Listing

#!/usr/bin/python

SRF cavity analog state computer

Takes in cavity field, forward, and reverse vector measurements

and computes the cavity detune frequency, decay parameter, and

power imbalance for the purposes of a tuning loop and quench detector.
Keeps a history of the previous four cavity field measurements so it
can get dV/dt.

H O H OH H H H

=+

Output of this program should be both valid c99 and valid input
for the scheduler/mapper.

+*

# See the rest of the Digaree infrastructure for details.

from cgen_lib import cgen_init, given, mul, sub, cpx_sub, cpx_mul

from cgen_lib import cpx_scale, cpx_dot, cpx_inv_conj, cpx_mul_conj

from cgen_lib import cpx_mag, set_result, cpx_persist, cpx_copy, cpx_add
cgen_init("cgen_srf.py")

# History of measured cavity voltages, used to compute dV/dt

# Initial values in simulation are read from init.dat or init2.dat.
cpx_persist("v1i")

cpx_persist ("v2")

cpx_persist("v3")

cpx_persist("v4")

# These lines declare the input variables,
# first six streamed from the radio
given("k_r") # forward

given("k_i") forward

given("r_i")

#
given("r_r") # reverse

# reverse

#

given("v_r" cavity

given("v_i") # cavity

# next eight host-settable
given("beta_r")

given("beta_i")

given("invT")

given("two") # needed by 1/x macro
given("sclr")

given("sclf")



given("sclv")
given("powt")

# Get (still unscaled) derivative

# Implements [-2 -1 0 1 2] FIR

cpx_sub("dv1", "v", "v4", 3) # note multiply-by-4
cpx_sub("dv2", "vi", "v3", 2) # note multiply-by-2
cpx_add("dvx", "dvi", "dv2", 3) # note multiply-by-4

# Result is the amount that V will change in 80xT.

# Including the second-order CIC used to generate input samples,
# this computation has a 3*T group delay.

# State-variable computation of the complex number a,

# yielding detune frequency and decay rate

cpx_inv_conj("x5", "v", 0, 3)

cpx_scale("dvdt", "dvx", "invT", 1)

cpx_mul ("x3", "k", "beta", 1, 1)

cpx_sub("x4", "dvdt", "x3", 2) # some evidence this shift should be 1
cpx_mul_conj("a", "x4", "x5", 2, 2)

set_result("ab", "a_r", "a_i")

# Power balance measure of cavity dissipation; uses magnitudes only
cpx_mag("magr", "r", 0) # reverse

mul ("powr", "sclr", "magr", 0)

cpx_mag("magf", "k", 0) # forward

mul ("powf", "sclf", "magf", 0)

sub("wgnet", "powf", "powr", 1) # net power transferred by waveguide
cpx_dot("dvsq", "v", "dvx", 2) # 2 x V x dV/dt = d/dt(V"2)

mul ("dudt", "dvsq", "sclv", 3) # dU/dt = power to stored energy
sub("diss", "wgnet", "dudt", 1) # est. of dissipation in cold cavity
sub("perr", "diss", "powt", 1) # allow for measurement error
set_result("cd", "diss", "perr") # trigger quench fault if perr > O

# Watch these like a hawk: order of execution matters,
# unlike everything else here

cpx_copy ("v4", "v3")

cpx_copy("v3", "v2")

cpx_copy ("v2", "vi")

cpx_copy("v1", "v")



