Encapsulate the information needed to perform inference
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public, | kind | :: | k | = | default_real | |
type(activation_t), | private | :: | activation_ | ||||
real(kind=k), | private, | allocatable | :: | biases_(:,:) | |||
type(tensor_map_t(k)), | private | :: | input_map_ | ||||
type(metadata_t), | private | :: | metadata_ | ||||
integer, | private, | allocatable | :: | nodes_(:) | |||
type(tensor_map_t(k)), | private | :: | output_map_ | ||||
real(kind=k), | private, | allocatable | :: | weights_(:,:,:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(string_t), | intent(in) | :: | metadata(:) | |||
real, | intent(in) | :: | weights(:,:,:) | |||
real, | intent(in) | :: | biases(:,:) | |||
integer, | intent(in) | :: | nodes(0:) | |||
type(tensor_map_t), | intent(in), | optional | :: | input_map | ||
type(tensor_map_t), | intent(in), | optional | :: | output_map |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(file_t), | intent(in) | :: | file_ |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(metadata_t), | intent(in) | :: | metadata | |||
double precision, | intent(in) | :: | weights(:,:,:) | |||
double precision, | intent(in) | :: | biases(:,:) | |||
integer, | intent(in) | :: | nodes(0:) | |||
type(tensor_map_t(double_precision)), | intent(in), | optional | :: | input_map | ||
type(tensor_map_t(double_precision)), | intent(in), | optional | :: | output_map |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(double_precision_file_t), | intent(in) | :: | file |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
The result is true if lhs and rhs are the same to within a tolerance
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | lhs | |||
class(neural_network_t), | intent(in) | :: | rhs |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self | |||
type(tensor_t), | intent(in) | :: | inputs |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(inout) | :: | self | |||
type(mini_batch_t), | intent(in) | :: | mini_batches_arr(:) | |||
real, | intent(out), | optional, | allocatable | :: | cost(:) | |
logical, | intent(in) | :: | adam | |||
real, | intent(in) | :: | learning_rate | |||
type(workspace_t), | intent(inout) | :: | workspace |
The result contains the output tensor values unmapped via the inverse of the mapping used in training
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self | |||
type(tensor_t), | intent(in) | :: | normalized_tensor |
The result contains the input tensor values normalized to fall on the range used during training
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self | |||
type(tensor_t), | intent(in) | :: | tensor |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
The result is true if lhs and rhs are the same to within a tolerance
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | lhs | |||
class(neural_network_t(double_precision)), | intent(in) | :: | rhs |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self | |||
type(tensor_t(double_precision)), | intent(in) | :: | inputs |
The result contains the output tensor values unmapped via the inverse of the mapping used in training
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self | |||
type(tensor_t(double_precision)), | intent(in) | :: | normalized_tensor |
The result contains the input tensor values normalized to fall on the range used during training
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self | |||
type(tensor_t(double_precision)), | intent(in) | :: | tensor |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(neural_network_t(double_precision)), | intent(in) | :: | self |