unmapped_network_t Derived Type

type, public :: unmapped_network_t


Inherits

type~~unmapped_network_t~~InheritsGraph type~unmapped_network_t unmapped_network_t type~neural_network_t neural_network_t type~unmapped_network_t->type~neural_network_t neural_network_ type~activation_t activation_t type~neural_network_t->type~activation_t activation_ type~metadata_t metadata_t type~neural_network_t->type~metadata_t metadata_ type~tensor_map_t tensor_map_t type~neural_network_t->type~tensor_map_t input_map_, output_map_ string_t string_t type~metadata_t->string_t modelName_, modelAuthor_, compilationDate_, activationFunction_, usingSkipConnections_

Components

Type Visibility Attributes Name Initial
integer, public, kind :: k = default_real
type(neural_network_t(k)), private :: neural_network_

Constructor

public interface unmapped_network_t


Type-Bound Procedures

procedure, private, non_overridable :: default_real_infer_unmapped

  • interface

    private elemental module function default_real_infer_unmapped(self, inputs) result(outputs)

    Arguments

    Type IntentOptional Attributes Name
    class(unmapped_network_t), intent(in) :: self
    type(tensor_t), intent(in) :: inputs

    Return Value type(tensor_t)

procedure, private, non_overridable :: double_precision_infer_unmapped

  • interface

    private elemental module function double_precision_infer_unmapped(self, inputs) result(outputs)

    Arguments

    Type IntentOptional Attributes Name
    class(unmapped_network_t(double_precision)), intent(in) :: self
    type(tensor_t(double_precision)), intent(in) :: inputs

    Return Value type(tensor_t(double_precision))